4 research outputs found

    Sparse Binary Features for Image Classification

    Get PDF
    In this work a new method for automatic image classification is proposed. It relies on a compact representation of images using sets of sparse binary features. This work first evaluates the Fast Retina Keypoint binary descriptor and proposes improvements based on an efficient descriptor representation. The efficient representation is created using dimensionality reduction techniques, entropy analysis and decorrelated sampling. In a second part, the problem of image classification is tackled. The traditional approach uses machine learning algorithms to create classifiers, and some works already propose to use a compact image representation using feature extraction as preprocessing. The second contribution of this work is to show that binary features, while being very compact and low dimensional (compared to traditional representation of images), still provide a very high discriminant power. This is shown using various learning algorithms and binary descriptors. These years a scheme has been widely used to perform object recognition on images, or equivalently image classification. It is based on the concept of Bag of Visual Words. More precisely, an image is described using an unordered set of visual words, that are generally represented by feature descriptions. The last contribution of this work is to use binary features with a simple Bag of Visual Words classifier. Tests of performance for the image classification are performed on a large database of images

    Graph-based Methods for Visualization and Clustering

    Get PDF
    The amount of data that we produce and consume is larger than it has been at any point in the history of mankind, and it keeps growing exponentially. All this information, gathered in overwhelming volumes, often comes with two problematic characteristics: it is complex and deprived of semantical context. A common step to address those issues is to embed raw data in lower dimensions, by finding a mapping which preserves the similarity between data points from their original space to a new one. Measuring similarity between large sets of high-dimensional objects is, however, problematic for two main reasons: first, high-dimensional points are subject to the curse of dimensionality and second, the number of pairwise distances between points is quadratic with respect to the amount of data points. Both problems can be addressed by using nearest neighbours graphs to understand the structure in data. As a matter of fact, most dimensionality reduction methods use similarity matrices that can be interpreted as graph adjacency matrices. Yet, despite recent progresses, dimensionality reduction is still very challenging when applied to very large datasets. Indeed, although recent methods specifically address the problem of scaleability, processing datasets of millions of elements remain a very lengthy process. In this thesis, we propose new contributions which address the problem of scaleability using the framework of Graph Signal Processing, which extends traditional signal processing to graphs. We do so motivated by the premise that graphs are well suited to represent the structure of the data. In the first part of this thesis, we look at quantitative measures for the evaluation of dimensionality reduction methods. Using tools from graph theory and Graph Signal Processing, we show that specific characteristics related to quality can be assessed by taking measures on the graph, which indirectly validates the hypothesis relating graph to structure. The second contribution is a new method for a fast eigenspace approximation of the graph Laplacian. Using principles of GSP and random matrices, we show that an approximated eigensubpace can be recovered very efficiently, which be used for fast spectral clustering or visualization. Next, we propose a compressive scheme to accelerate any dimensionality reduction technique. The idea is based on compressive sampling and transductive learning on graphs: after computing the embedding for a small subset of data points, we propagate the information everywhere using transductive inference. The key components of this technique are a good sampling strategy to select the subset and the application of transductive learning on graphs. Finally, we address the problem of over-discriminative feature spaces by proposing a hierarchical clustering structure combined with multi-resolution graphs. Using efficient coarsening and refinement procedures on this structure, we show that dimensionality reduction algorithms can be run on intermediate levels and up-sampled to all points leading to a very fast dimensionality reduction method. For all contributions, we provide extensive experiments on both synthetic and natural datasets, including large-scale problems. This allows us to show the pertinence of our models and the validity of our proposed algorithms. Following reproducible principles, we provide everything needed to repeat the examples and the experiments presented in this work

    Fast Eigenspace Approximation using Random Signals

    Get PDF
    We focus in this work on the estimation of the first k eigenvectors of any graph Laplacian using filtering of Gaussian random signals. We prove that we only need k such signals to be able to exactly recover as many of the smallest eigenvectors, regardless of the number of nodes in the graph. In addition, we address key issues in implementing the theoretical concepts in practice using accurate approximated methods. We also propose fast algorithms both for eigenspace approximation and for the determination of the kth smallest eigenvalue λk. The latter proves to be extremely efficient under the assumption of locally uniform distribution of the eigenvalue over the spectrum. Finally, we present experiments which show the validity of our method in practice and compare it to state-of-the-art methods for clustering and visualization both on synthetic small-scale datasets and larger real-world problems of millions of nodes. We show that our method allows a better scaling with the number of nodes than all previous methods while achieving an almost perfect reconstruction of the eigenspace formed by the first k eigenvectors

    Performance management and performance related pay survey 1993

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:6423.8302(1993) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore